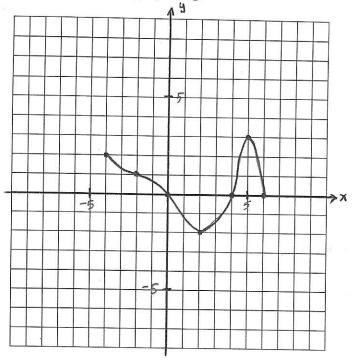

Show all necessary steps clearly, neatly, and systematically to receive full credit.

- Consider the equation of circle: $x^2 + y^2 + -4x + 8y 5 = 0$.
- Find the center and radius of the circle. a.
- b. Graph the circle.

- Find the equation of tangent line to the circle at the point (7, -4).
- Show that the points A = (3, 4), B = (1, 1), C = (-2, 3) are the vertices of a right isosceles triangle.

3. Find the difference quotient of f: $f(x) = 3x^2 - 2x$.


4. Let
$$f(x) = \frac{x}{x-1}$$
 and $g(x) = \sqrt{x+1}$.

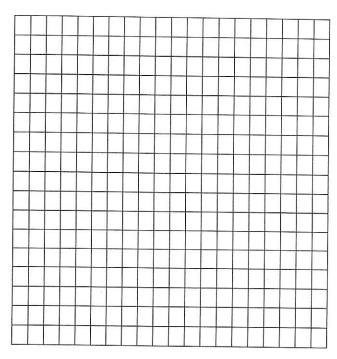
a. Find (f+g)(x) and domain.

b. Find $(f \cdot g)(x)$ and domain.

c. Find $\left(\frac{f}{g}\right)(x)$ and domain.

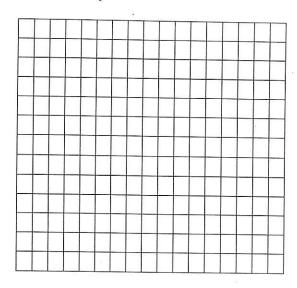
5. Consider the graph of g.

- a. Find x such that f(x) = 2.
- b. Find the domain of g.
- c. Find the range of g.
- d. Find the intercepts of g. x-intercept(s) y-intercept(s)


- e. Find the increasing interval of g.
- f. Find the decreasing interval of g.
- g. Find the zeros of g.
- h. Find the local maximum and local minimum.
- i. Find the absolute maximum and absolute minimum.

6. Let
$$f(x) = \frac{x}{x^2 - 1}$$
.

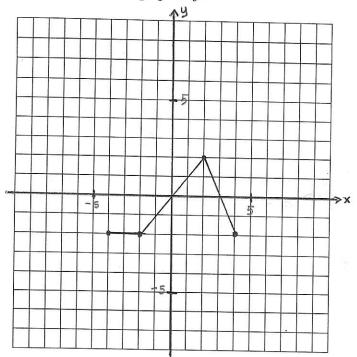
a. Determine whether the function is even, odd, or neither.


b. Find the average rate of change of f from 3 to 5.

7. Sketch by transformation: $f(x) = -\sqrt[3]{x-2} + 4$. Label at least 3 points.

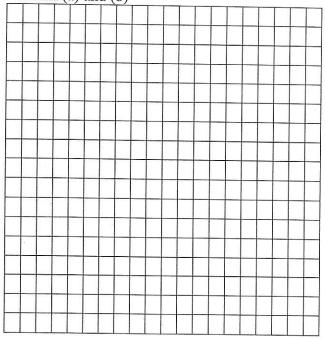
- Consider the function: $f(x) = \begin{cases} x^3 & \text{if } -2 \le x < 1 \\ |3x 2| & \text{if } 1 \le x \le 4 \end{cases}$ Find f(-1), f(1), f(-3).
- c. Find domain of f.

Sketch f.

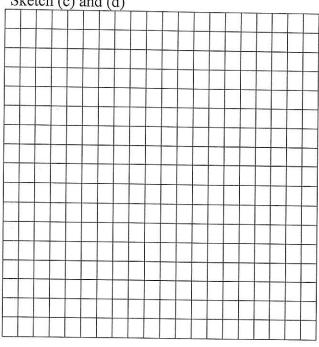

d. Find the range of f.

e. Is f continuous?

The following figure is a semicircular inscribed in the rectangle. Express the area of the shaded region as a function of the circumference, C of the semicircle.



10. Consider the graph of f.



- a. Sketch f(x-5)+4.
- b. Sketch f(2x).
- c. Sketch -f(x).
- d. Sketch $\frac{1}{4}f(x)$.

Sketch (a) and (b)

Sketch (c) and (d)

